Research topics
- Representation theory of algebras
-
- Homological and categorical aspects of representation theory:
- Homological and categorical aspects of representation theory:
-
-
- Galois covering theory for module and functor categories.
- Krull-Gabriel dimension and Prest Conjecture.
- Homological problems for classes of Artin algebras defined by properties of the Auslander-Reiten quiver and structure of the component quiver.
-
-
- Structure of module category for selfinjective algebras:
-
-
- Classification of selfinjective algebras of finite representation type over an arbitrary field.
- Weighted surface algebras and symmetric periodic algebras of period 4.
- Classification of tame selfinjective algebras for classes defined by properties of the bounded Gabriel quiver.
- Deformed preprojective algebras of generalized Dynkin type.
-
-
- Derived categories and equivalences of triangulated categories:
- Derived categories and equivalences of triangulated categories:
-
-
- Derived categories of gentle algebras and their equivalences.
- Mutations of symmetric periodic algebras.
- Categories of nilpotent operators with flags of invariant subspaces vs. coherent sheaves over weighted projective lines.
-
-
- Algorithmic and combinatorial aspects of representation theory:
- Algorithmic and combinatorial aspects of representation theory:
-
-
- Recovering information on structure and properties of an exact category from the level of its Grothendieck group.
- Algorithms of constructing indecomposable matrix representations.
- Birkhoff Problem, nilpotent subspaces, counting of submodule filtrations and Hall polynomials.
- Constructions of combinatorial invariants determining the shape of bounded Gabriel quiver for distinguished classes of algebras.
-
- Selected topics of algebraic geometry
-
- Geometry of module varieties:
- Geometry of module varieties:
-
-
- Global properties of module varieties and their irreducible components.
- Degeneration order between module orbits depending on the algebra properties.
- Local geometric properties of orbit closures in module varieties.
- Classification of selected classes of singularities in the orbit closures of modules.
- Tangent spaces, generators of the zero ideals and transversal slices for orbit closures of modules.
-
-
- Degenerations of algebras:
-
-
- Profiled degeneration processes.
- Description of the geometric degeneration scheme inside distinguished classes of algebras.
-
- Derivations, rings of constants and Jacobian Conjecture
-
-
- Square-free and radical factorizations vs. Jacobian Conjecture.
- Jacobian Conjecture in positive characteristic.
- Jacobian conditions for polynomials over unique factorization domains.
- Algebraic structures on generalized sets.
-
- Applications of algebraic methods in mathematical physics, molecular biology and data analysis
-
-
- Poisson structures and symplectic manifolds.
- Representations of gentle algebras and topological quantum field theory.
- Hermiticity-preserving superoperators in quantum information theory.
- Binding polynomials in context of the quantitative analysis of protein-ligand interactions.
- Persistence modules and homologies in topological data analysis.
-